2234

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

Authorized Public Auditing of Dynamic Big Data

Storage on Cloud with Efficient Verifiable
Fine-Grained Updates

Chang Liu, Jinjun Chen, Senior Member, IEEE, Laurence T. Yang, Member, IEEE, Xuyun Zhang,

1

Chi Yang, Rajiv Ranjan, and Ramamohanarao Kotagiri

Abstract—Cloud computing opens a new era in IT as it can provide various elastic and scalable IT services in a pay-as-you-go
fashion, where its users can reduce the huge capital investments in their own IT infrastructure. In this philosophy, users of cloud
storage services no longer physically maintain direct control over their data, which makes data security one of the major concerns of
using cloud. Existing research work already allows data integrity to be verified without possession of the actual data file. When the
verification is done by a trusted third party, this verification process is also called data auditing, and this third party is called an auditor.
However, such schemes in existence suffer from several common drawbacks. First, a necessary authorization/authentication
process is missing between the auditor and cloud service provider, i.e., anyone can challenge the cloud service provider for a proof
of integrity of certain file, which potentially puts the quality of the so-called ‘auditing-as-a-service’ at risk; Second, although some
of the recent work based on BLS signature can already support fully dynamic data updates over fixed-size data blocks, they only
support updates with fixed-sized blocks as basic unit, which we call coarse-grained updates. As a result, every small update will cause
re-computation and updating of the authenticator for an entire file block, which in turn causes higher storage and communication overheads.
In this paper, we provide a formal analysis for possible types of fine-grained data updates and propose a scheme that can fully support
authorized auditing and fine-grained update requests. Based on our scheme, we also propose:anenhancementthatcandramaticallyreduce
communicationtoverheads:forverifying'smalllupdates. Theoretical analysis and experimental results demonstrate that our scheme can
offer not only enhanced security and flexibility, but also significantly lower overhead for big data applications with a large number of
frequent small updates, such as applications in social media and business transactions.

Index Terms—Cloud computing, big data, data security, provable data possession, authorized auditing, fine-grained dynamic data update

4

INTRODUCTION

NO. 9, SEPTEMBER 2014

CLOUD computing is being intensively referred to as one
of the most influential innovations in information
technology in recent years [1], [2]. With resource virtuali-
zation, cloud can deliver computing resources and services
in a pay-as-you-go mode, which is envisioned to become as
convenient to use similar to daily-life utilities such as
electricity, gas, water and telephone in the near future [1].
These computing services can be categorized into Infra-
structure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS) [3]. Many international IT

o C. Liu is with the School of Comput. Sci. and Tech., Huazhong Uni. of
Sci. and Tech., China, and also with the Faculty of Eng. and IT, Uni. of
Tech., Sydney, Australia. E-mail: changliu.it@gmail.com.

o J. Chen, X. Zhang, and C.Yang are with the Faculty of Eng. and IT, Uni.
of Tech., Sydney, Australia. E-mail: {jinjun.chen, xyzhanggz, chiyangit}@
gmail.com.

e L.T. Yang is with the School of Comput. Sci. and Tech., Huazhong Uni. of
Sci. and Tech., China, and also with the Dept. of Comput. Sci., St. Francis
Xavier Uni., Canada. E-mail: Ityang@stfx.ca.

e R. Ranjan is with CSIRO Computational Informatics Division, Australia.
E-mail: rranjans@gmail.com.

e R. Kotagiri is with the Dept. of Comput. and Information Systems, The
Uni. of Melbourne, Australia. E-mail: kotagiri@unimelb.edu.au.

Manuscript received 21 May 2013; revised 23 July 2013; accepted 24 July
2013. Date of publication 4 Aug. 2013; date of current version 13 Aug. 2014.
Recommended for acceptance by Y. Xiang.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TPDS.2013.191

corporations now offer powerful public cloud services to
users on a scale from individual to enterprise all over the
world; examples are Amazon AWS, Microsoft Azure, and
IBM SmartCloud.

Although current development and proliferation of
cloud computing is rapid, debates and hesitations on the
usage of cloud still exist. Data security/privacy is one of
the major concerns in the adoption of cloud computing [3],
[4], [5]. Compared to conventional systems, users will lose
their direct control over their data. In this paper, we will
investigate the problem of integrity verification for big
data storage in cloud. This problem can also be called data
auditing [6], [7] when the verification is conducted by a
trusted third party. From cloud users’ perspective, it may
also be called ‘auditing-as-a-service’. To date, extensive
research is carried out to address this problem [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15]. In a remote verification
scheme, the cloud storage server (CSS) cannot provide a
valid integrity proof of a given proportion of data to a
verifier unless all this data is intact. To ensure integrity of
user data stored on cloud service provider, this support is
of no less importance than any data protection mechanism
deployed by the cloud service provider (CSP) [16], no
matter how secure they seem to be, in that it will provide
the verifier a piece of direct, trustworthy and real-timed
intelligence of the integrity of the cloud user’s data through
a challenge request. It is especially recommended that
data auditing is to be conducted on a regular basis for the

1045-9219 © 2013 IEEE. Personal use is permitted, but rlegublication/ redistribution requires IEEE permission.

. i htip: i
Authorized licensed use ﬁﬁ%ted‘?o{ {\Ivg%vga

S USRI botRiadEd B

lgggr?"l%se/rri%hﬁﬁg %%’f)gl&l f?rd?gr?rgﬁflolggﬁi%lore. Restrictions apply.

Andrew

Andrew

LIU ET AL.: PUBLIC AUDITING OF BIG DATA WITH FINE-GRAINED UPDATES ON CLOUD

users who have high-level security demands over their
data.

Although existing data auditing schemes already have
various properties (see Section 2), potential risks and
inefficiency such as security risks in unauthorized auditing
requests and inefficiency in processing small updates still
exist. In this paper, we will focus on better support for
small dynamic updates, which benefits the scalability and
efficiency of a cloud storage server. To achieve this, our
scheme utilizes a flexible data segmentation strategy and a
ranked Merkle hash tree (RMHT). Meanwhile, we will
address a potential security problem in supporting public
verifiability to make the scheme more secure and robust,
which is achieved by adding an additional authorization
process among the three participating parties of client, CSS
and a third-party auditor (TPA).

Research contributions of this paper can be summarized
as follows:

1. For the first time, we formallywanalyzendifferent
types of fine-grained dynamic data update requests
on variable-sized file blocks in a single dataset. To
the best of our knowledge, we are the first to pro-
pose a public auditing scheme based on BLS signa-
ture and Merkle hash tree (MHT) that can support
fine-grained update requests. Compared to existing
schemes, our scheme supports updates with a size
that is not restricted by the size of file blocks,
thereby offers extra flexibility and scalability com-
pared to existing schemes.

2. For better security, our scheme ificorporatesianvad:
ditional authorization process with the aim of
eliminating threats of unauthorized audit chal-
lenges from malicious or pretended third-party
auditors, which we term as ‘authorized auditing’.

3. We investigate how to improve the efficiency in
verifying frequent small updates which exist in
many popular cloud and big data contexts such as
social media. Accordingly, we propose a further
enhancement for our scheme to make it more
suitable for this situation than existing schemes.
Compared to existing schemes, both theoretical
analysis and experimental results demonstrate that
our modified scheme can significantly lower com-
munication overheads.

For the convenience of the readers, we list some
frequently-used acronyms in Appendix 1 which is avail-
able in the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2013.191.

1.1 Paper Organization

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 provides motivating ex-
amples as well as a detailed analysis of our research
problem. Section 4 provides a description of our proposed
scheme in detail, with also a detailed analysis of fine-
grained update requests and how they can be supported.
Section 5 provides security analysis for our design.
Section 6 provides experimental results. Section 7 con-
cludes our research and points out future work.

2235

2 RELATED WORK

Compared to traditional systems, scalability and elasticity
are key advantages of cloud [1], [2], [3]. As such, efficiency
in supporting dynamic data is of great importance. Security
and privacy protection on dynamic data has been studied
extensively in the past [6], [8], [12], [17]. In this paper,
we will focusiornsmalliandifrequentidatatipdates, which is
important because these updates exist in many cloud
applications such as business transactions and online social
networks (e.g. Twitter [18]). Cloud users may also need to
split big datasets into smaller datasets and store them in
different physical servers for reliability, privacy-preserving
or efficient processing purposes.

Among the most pressing problems related to cloud is
data security/privacy [4], [5], [19]. It has been one of the
most frequently raised concerns [5], [20]. There is a lot of
work trying to enhance cloud data security/privacy with
technological approaches on CSP side, such as [21], [22]. As
discussed in Section 1, they are of equal importance as our
focus of external verifications.

Integrity verification for outsourced data storage has
attracted extensive research interest. The concept of proofs
of retrievability(POR) and its first model was proposed by
Jules et al. [14]. Unfortunately, their scheme can only be
applied to static data storage such as archive or library. In
the same year, Ateniese, et al. proposed a similar model
named ‘provabledatarpossession(PDP) [10]. Their schemes
offer ‘blockless verification’ which means the verifier can
verify the integrity of a proportion of the outsourced file
through verifying a combination of pre-computed file tags
which they call homomorphic verifiable tags (HVTs) or
homomorphic linear authenticators (HLAs). Work by Shac-
ham, et al. [15] provided an improved POR model with
stateless verification. They also proposed a MAC-based
private verification scheme and the first public verification
scheme in the literature that based on BLS signature scheme
[23]. In their second scheme, the generation and verification
of integrity proofs are similar to signing and verification of
BLS signatures. When wielding the same security strength
(say, 80-bit security), a BLS signature (160 bit) is much
shorter than an RSA signature (1024 bit), which is a desired
benefit for a POR scheme. They also proved the security of
both their schemes and the PDP scheme by Ateniese, et al.
[9], [10]. From then on, the concepts of PDP and POR were in
fact unified under this new compact POR model. Ateniese,
et al. extended their scheme for enhanced scalability [8], but
only partial data dynamics and a predefined number of
challenges is supported. In 2009, Erway, et al. proposed the
first PDP scheme based on skip list that can support full
dynamic data updates [12]. However, public auditability
and variable-sized file blocks are not supported by default.
Wang, et al. [6] proposed a scheme based on BLS signature
that can support public auditing (especially from a third-
party auditor, TPA) and full data dynamics, which is one of
the latest works on public data auditing with dynamics
support. However, their scheme lacks support for fine-
grained update and authorized auditing which are the main
focuses of our work. Latest work by Wang et al. [7] added a
random masking technology on top of [6] to ensure the TPA
cannot infer the raw data file from a series of integrity

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

Andrew

Andrew

Andrew

Andrew

Andrew

Andrew

2236

Third Party Auditor|
(TPA)

Outsourcing and Retrieving
of cloud Data Storage

(Semi-Trusted)

Cloud Users/The
Client

Cloud Storage Server (CSS)

Fig. 1. Relationship between the participating parties in a public auditing
scheme.

proofs. In their scheme, they also incorporated a strategy
first proposed in [15] to segment file blocks into multiple
‘sectors’. However, the use of this strategy was limited to
trading-off storage cost with communication cost.

Other lines of research in this area include the work of
Ateniese, et al. [24] on how to transform a mutual iden-
tification protocol to a PDP scheme; scheme by Zhu, et al.
[13] that allows different service providers in a hybrid
cloud to cooperatively prove data integrity to data owner;
and the MR-PDP Scheme based on PDP [10] proposed by
Curtmola, et al. [11] that can efficiently prove the integrity
of multiple replicas along with the original data file.

3 MOTIVATING EXAMPLES AND
PROBLEM ANALYSIS

3.1 Motivating Examples

Cost-efficiency brought by elasticity is one of the
most important reasons why cloud is being widely
adopted. For example, Vodafone Australia is currently
using Amazon cloud to provide their users with mobile
online-video-watching services. According to their statis-
tics, the number of video requests per second (RPS) can
reach an average of over 700 during less than 10 percent
of the time such as Friday nights and public holidays,
compared to a mere 70 in average in the rest 90 percent of
the time. The variation in demand is more than 9 times
[3]. Without cloud computing, Vodafone cannot avoid
purchasing computing facilities that can process 700 RPS,
but it will be a total waste for most of the time. This is
where cloud computing can save a significant amount of
investments—cloud’s elasticity allows the user-purchased
computation capacity to scale up or down on-the-fly at any
time. Therefore, user requests can be fulfilled without
wasting investments in computational powers. Other 2
large companies who own news.com.au and realestate.com.
au, respectively, are using Amazon cloud for the same
reason [3]. We can see through these cases that scalability
and elasticity, thereby the capability and efficiency in sup-
porting data dynamics, are of extreme importance in cloud
computing.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 9, SEPTEMBER 2014

Many big data applications will keep user data stored on
the cloud for small-sized but very frequent updates. A most
typical example is Twitter, where each tweet is restricted to
140 characters long (which equals 140 bytes in ASCII code).
They can add up to a total of 12 terabytes of data per day
[18]. Storage of transaction records in banking or securities
markets is a similar and more security-heavy example.
Moreover, cloud users may need to split large-scale
datasets into smaller chunks before uploading to the cloud
for privacy-preserving [17] or efficient scheduling [19]. In
this regard, efficiency in processing small updates is
always essential in big data applications.

To better support scalability and elasticity of cloud
computing, some fecentipublicrdataratiditingrschemesido
supportndatandynamics: However, types of updates
supported are limited. Therefore previous schemes may
not be suitable for some practical scenarios. Besides, there
is a potential security threat in the existing schemes. We
will discuss these problems in detail in the next Section 3.2.

3.2 Problem Analysis
3.2.1 Roles of the Participating Parties

Most PDP and POR schemes can support public data
verification. In such schemes, there are three participating
parties: client/nCSSyandnTPA. Relationships between the
three parties are shown in Fig. 1. In brief, both CSS and TPA
are only semi-trusted to the client. In the old model, the
challenge message is very simple so that everyone can send
a challenge to CSS for the proof of a certain set of file blocks,
which can enable malicious exploits in practice. First, a
malicious party can launch distributed denial-of-service
(DDOS) attacks by sending multiple challenges from
multiple clients at a time to cause additional overhead on
CSS and congestion to its network connections, thereby
causing degeneration of service qualities. Second, an
adversary may get privacy-sensitive information from the
integrity proofs returned by CSS. By challenging the CSS
multiple times, an adversary can either get considerable
information about user data (due to the fact that returned
integrity proofs are computed with client-selected data
blocks), or gather statistical information about cloud service
status. To this end, traditional PDP models cannot quite
meet the security requirements of ‘auditing-as-a-service’,
even though they support public verifiability.

3.2.2 Verifiable Fine-Grained Dynamic Data Operations

Some of the existing public auditing schemes can already
support full data dynamics [6], [7], [12]. In their models,
only insertions, deletions and modifications on fixed-sized
blocks are discussed. Particularly, in BLS-signature-based
schemes [6], [7], [13], [15] with 80-bit security, size of each
data block is either restricted by the 160-bit prime group
order p, as each block is segmented into a fixed number of
160-bit sectors. This design is inherently unsuitable to
support variable-sized blocks, despite their remarkable
advantage of shorter integrity proofs. In fact, as described
in Section 2, existing schemes can only support insertion,
deletion or modification of one or multiple fixed-sized
blocks, which we call ‘coarse-grained” updates.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

Andrew

Andrew

Andrew

LIU ET AL.: PUBLIC AUDITING OF BIG DATA WITH FINE-GRAINED UPDATES ON CLOUD

R = h(a),26

2237

Fig. 2. Example of a rank-based Merkle hash tree (RMHT).

Although support for coarse-grained updates can pro-
vide an integrity verification scheme with basic scalabil-
ity, data updating operations in practice can always be
more complicated. For example, the verifiable update
process introduced in [6], [12] cannot handle deletions or
modifications in a size lesser than a block. For insertions,
there is a simple extension that enables insertion of an
arbitrary-sized dataset—CSS canwalwaysiicreatenannew
block (or several blocks) for every insertion. However,
when there are a large number of small upgrades
(especially insertions), the amount of wasted storage
will be huge. For example, in [6], [12] the recommended
size for a data block is 16k bytes. For each insertion of a
140-byte Twitter message, more than 99 percent of the
newly allocated storage is wasted—they cannot be reused
until the block is deleted. These problems can all be re-
solved if fine-grained data updates are supported.
According to this observation, supporting of fine-grained
updates can bring not only additional flexibility, but also
improved efficiency.

Our model assumes the following;:

Assumption 1. CSS will honestly answer all data queries to its
clients. In other words, if a user asks to retrieve a certain piece
of her data stored on CSS, CSS will not try to cheat her with
an incorrect answer.

This assumption—reliability—should be a basic service
quality guarantee for cloud storage services.

PDP and POR are different models with similar goals.
One main difference is that the file is encodediwithrerror
correction coderin therPOR"model) but not in the PDP
model [6]. As in [6], [7], we will not restrict our work to
either of the models.

4 THE PROPOSED SCHEME

Some common notations are introduced in Appendix A.

4.1 Preliminaries
4.1.1 Bilinear Map

Assume a group G is a gap Diffie-Hellman (GDH) group
with prime order p. A bilinear map is a map constructed as

e: G x G — Gr where Gr is a multiplicative cyclic group
with prime order. A useful e should have the followmgg
properties: bilinearity—Vm,n € G = e(m?,n’) = e(m,n)";
non-degeneracy—Vm € G, m #0=e(m,m) #1; and
computability—e should be efficiently computable. For
simplicity, we will use this symmetric bilinear map in our
scheme description. Alternatively, the more efficient
asymmetric bilinear map e: G; x G — Gr may also be
applied, as was pointed out in [23].

4.1.2 Ranked Merkle Hash Tree (RMHT)

The Merkle Hash Tree (MHT) [25] has been intensively
studied in the past. In this paper we utilize an extended
MHT with ranks which we named RMHT. Similar to a
binary tree, each node N will have a maximum of 2 child
nodes. In fact, according to the update algorithm, every
non-leaf node will constantly have 2 child nodes. Informa-
tion contained in one node N in an RMHT 7' is represented
as {H,rn} where H is a hash value and ry is the rank of this
node. T'is constructed as follows. For a leaf node LN based
on a message m;, we have H = h(m;), rpy = s;; A parent
node of Ny = {Hy,rn1} and No = {Ha, rn2} is constructed
as Np = {h(H1||H2), (rx1 + 7n2) } where || is a concatenation
operator. A leaf node m;’s AAI Q; is a set of hash values
chosen from every of its upper level so that the root value
R can be computed through {m;,Q;}. For example, for
the RMHT demonstrated in Fig. 2, m;'s AAI Q; =
{h(my2), h(e), h(d)}. According to the property of RMHT,
we know that the number of hash values included in Q;
equals the depth of m; in T

4.2 Framework and Definitions

We first define the following block-level fine-grained
update operations:

Definition 1 (Types of Block-Level Operations in Fine-
Grained Updates). Block-level operations in fine-grained dy-
namic data updates may contain the following 6 types of
operations: partial modification PM-—a consecutive part of a
certain block needs to be updated; whole-block modification
M-—a whole block needs to be replaced by a new set of data;
block deletion D—a whole block needs to be deleted from the
tree structure; block insertion J—ua whole block needs to be
created on the tree structure to contain newly inserted data;

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

Andrew

Andrew

2238

and block splitting SP—a part of data in a block needs to be
taken out to form a new block to be inserted next to it."

Framework of public auditing scheme with data dynam-
ics support is consisted of a series of algorithms. Similar
to [12], the algorithms in our framework are: Keygen,
FilePreProc, Challenge, Verify, Genproof, PerformUpdate
and Veri fyUpdate. Detailed definitions and descriptions can
be found in Appendix B.

4.3 Our Scheme

We now describe our proposed scheme in the aim of
supporting variable-sized data blocks, authorized third-
party auditing and fine-grained dynamic data updates.
4.3.1
Our scheme is described in three parts:

Overview

1. Setup: the client will generate keying materials via
KeyGen and FileProc, then upload the data to CSS.
Different from previous schemes, the client will store a
RMHT instead of a MHT as metadata. Moreover, the
client will authorize the TPA by sharing a value sigurs-

2. Verifiable Data Updating: the CSS performs the client’s
fine-grained update requests via PerformUpdate,
then the client runs VerifyUpdate to check whether
CSS has performed the updates on both the data
blocks and their corresponding authenticators (used
for auditing) honestly.

3. Challenge, Proof Generation and Verification: De-
scribes how the integrity of the data stored on CSS is
verified by TPA via GenChallenge, GenProof and Veri fy.

We now describe our scheme in detail as follows.

4.3.2 Setup

This phase is similar to the existing BLS-based schemes
except for the segmentation of file blocks. Let
e: G x G — Gr be a bilinear map defined in Section 4.1,
where G is a GDH group supported by Z,%.H : (0,1)" — G'is
a collision-resistant hash function, and h is another crypto-
graphic hash function.

After all parties have finished negotiating the fundamental
parameters above, the client runs the following algorithms:

KeyGen(1%): The client generates a secret value a € 7,
and a generator g of G, then compute v=g®. A secret
signing key pair {spk,ssk} is chosen with respect to a
designated provably secure signature scheme whose
signing algorithm is denoted as Sig(). This algorithm
outputs {ssk,a} as the secret key sk and {spk, v, g} as the
public key pk. For simplicity, in our settings, we use the
same key pair for signatures, i.e., ssk = «, spk = {v, g}.

1. There are other possible operations such as block merging
ME—two blocks need to be merged into the first block before the
second block is deleted, and data moving MVY—move a part of data
from one block to another, if the size of the second block does not
exceed sy, -7 after this update. However, the fine-grained update
requests discussed in this paper do not involve these operations, thus
we will omit them in our current discussion. We will leave the problem
of how to exploit them in future work.

2. Most exponential operations in this paper are modulo p.
Therefore, for simplicity, we will use ¢” instead of ¢ modp unless
otherwise specified.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 9, SEPTEMBER 2014

FilePreProc(F, sk, SegReq): According to the preemp-
tively determined segmentation requirement SegReq (in-
cluding syax, a predefined upper-bound of the number of
segments per block), segments file F' into F = {m;},
ieLl],je1,s],s €1, Smax), i-€., F is segmented into a
total of [blocks, with the ith block having s; segments.
In our settings, every file segment should of the same size
n € (0,p) and as large as possible (see [15]). Since |p| = 20
bytes is used in a BLS signature with 80-bit security
(sufficient in practice), n =20 bytes is a common choice.
According to Spay, aset U = {uy, € Zyp}k € [1, spax is chosen so
that the client can compute the HLAs o; for each block:
o; = (H(m;) T]j_, u;")" which constitute the ordered set
® = {07}, This is similar to signing a message with BLS
signature. The client also generate a root R based on
construction of an RMHT T over H(m;) and compute
sig = (H(R))". Finally, letu = (w1]| . .. ||lus,,,), the client com-
pute the file tag for F' as t = name||n||u||Sig,,;, (namel||n||v)
and then output {F,®,T, R, sig, t}.

4.3.3 Prepare for Authorization

The client asks (her choice of) TPA for its ID VID (for security,
VID is used for authorization only). TPA will then return its
ID, encrypted with the client’s public key. The client will then
compute sigayry = Sig,y,(AUTH||t||VID) and sends sigayry
along with the auditing delegation request to TPA for it to
compose a challenge later on.

Different from existing schemes, after the execution of
the above two algorithms, the client will keep the RMHT
‘skeleton” with only ranks of each node and indices of each
file block to reduce fine-grained update requests to block-
level operations. We will show how this can be done in
Section 4.4. The client then sends {F,t, ®,sig, AUTH} to
CSS and deletes {F, F,t,®, sig} from its local storage. The
CSS will construct an RMHT T based on m; and keep T
stored with {F,t,®,sig, AUTH} for later verification,
which should be identical to the tree spawned at client-
side just a moment ago.

4.3.4 Verifiable Data Updating

Same as Setup, this process will also be between client and
CSS. We discuss 5 types of block-level updates (operations)
that will affect T: PM, M, D, J and SP (see Definition 1).
We will discuss how these requests can form fine-grained
update requests in general in Section 4.4.

The verifiable data update process for a PM-typed
update is as follows (see Fig. 3):

1. The client composes an update quest UpdateReq
defined in Section 4.2 and sends it to CSS.

2. CSS executes the following algorithm:

Per formUpdate(UpdateReq, F): CSS parses UpdateReq
and get {PM, 1,0, My, }. When Type = PM, CSS will update
m; and T accordingly, then output P,pue = {mi, Q;, R/, sig}
(note that Q; stays the same during the update) and the
updated file F'.

Upon finishing of this algorithm, CSS will send P,qqt. to
the client.

3. After receiving P,,date, the client executes the follow-
ing algorithm:

Veri fyUpdate(pk, Pypdare): The client computes m) using
{m;, UpdateReq}, then parse Pypgac to {m;,Q;, R, sig},

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: PUBLIC AUDITING OF BIG DATA WITH FINE-GRAINED UPDATES ON CLOUD 2239
Client CSS
PM,i,oom
1. Send update (block-level operation) request { new} >
UpdateReq 2. Locate m;, perform the update, update m; to m;,
compute R’ with {m!, Q;
{m;, Q, R', sig} et
. : ; 3 - Pupdate
3. ComputeR with {(m;),Q;}, verify sig with R. If success, compute
m; with {UpdateReq, m;}, then compute R, with {H(m}),Q;} .
if Rpew = R':
’ a
’ ’ i ™y cor_ "% I eyl
Compute g = (H(mi)]'[“:.=l Y “) and sig’ = (H(R")) {o!,sig"} R
(if Rpew = R') " 4. Update o; to o{ and sig to sig’ accordingly.

Fig. 3. Verifiable PM-typed Data Update in our scheme.

compute R (and H(R)) and R, use {m;,Q;} and {m},Q;}
respectively. It verifies sig use H(R), and check if
Ry = R'. If either of these two verifications fails, then
output FALSE and return to CSS, otherwise output TRUE.

If the output of the algorithms is TRUE, then the client
computes of = (H(m}) Hf;l u?n’)‘l and sig = (H(R'))" then
sends {0, sig'} to CSS.

4. The CSS will update o; to 0! and sig to sig’ accordingly
and delete F if it receives {of,si¢g'}, or it will run
Per formUpdate() again if it receives FALSE. A cheating
CSS will fail the verification and constantly receive FASLE
until it performed the update as the client requested.

Due to their similarity to the process described above,
other types of operations are only briefly discussed as
follows. For whole-block operations M, D, and J, as in
model in the existing work [6], the client can directly
compute o} without retrieving data from the original file F
stored on CSS, thus the client can send of along with
UpdateReq in the first phase. For responding to an update
request, CSS only needs to send back H(m;) instead of m,.
Other operations will be similar to where Type = PM. For
an SP-typed update, in addition to updating m; to m}, a
new block m* needs to be inserted to T after m).
Nonetheless, as the contents in m* is a part of the old m;,
the CSS still needs to send m; back to the client. The process
afterwards will be just similar to a PM-typed upgrade,
with an only exception that the client will compute R,.,
using {m/},h(m*),Q;} to compare to R/, instead of
using {m},Q;} as in the PM-typed update.

4.3.5 Challenge, Proof Generation and Verification

In our setting, TPA must show CSS that it is indeed
authorized by the file owner before it can challenge a
certain file.

1. TPA runs the following algorithm:

GenChallenge(Acc, pk, sigayrn): According to the accu-
racy required in this auditing, TPA will decide to verify ¢
out of the total [blocks. Then, a challenge message
chal = {sigavrn, {VID} p, s 13, vi};er} 1S generated where
VID is TPA’s ID, I is a randomly selected subset of [1,]
with ¢ elements and {v; € Z,},.; are ¢ randomly-chosen
coefficients. Note that VID is encrypted with the CSS’s
public key PK¢ss so that CSS can later decrypt {VID} pp.
with the corresponding secret key.

TPA then sends chal to CSS.

2. After receiving chal, CSS will run the following
algorithm:

GenProof (pk, F, sigavrw, ®, chal): Let w = max {s;},.;. CSS
will first verify sigayry with AUTH, t, VID and the client’s
public key spk, and output REJECT if it fails. Otherwise, CSS
will compute py, = Y,y vima, k € [1,w] and o = [[,.; 0;" and
compose the proof P as = {{su}yep1) {H(mi), i}y, sigh,
then ouput P. Note that during the computation of y;, we will
let my, =0if k> s;.

After execution of this algorithm, CSS will send P to TPA.

3. After receiving P, TPA will run the following
algorithm:

Veri fy(pk, chal, P): TPA will compute R using { H(m;), Q;}
and then verify sig use public keys g and v by comparing
e(sig, g) with (H(R),v).If they are equal, letw = .., H(m;)"-
[Trcpi wi's TPA will further check if e(o, g) equals e(w,v),
which is similar to verifying a BLS signature. If all the
two equations hold then the algorithm returns TRUE,
otherwise it returns FALSE.

An illustration of Challenge and Verification processes
can be found in Fig. 4.

4.4 Analysis on Fine-Grained Dynamic
Data Updates

Following the settings in our proposed scheme, we now
define a fine-grained update request for an outsourced file
divided into [variable-sized blocks, where each block is
consisted of s; € [1, smax] segments of a fixed size 7 each.
Assume an RMHT T is built upon {m;},y ; for authenti-
cation, which means 7' must keep updated with each RMHT
operation for CSS to send back the root R for the client to
verify the correctness of this operation (see Section 4.3). We
now try to define and categorize all types of fine-grained
updates, and then analyze the RMHT operations with
Type = PM, M, D, J or SP that will be invoked along with
the update of the data file.

Definition 2 (Fine-Grained Data Update Request). A
fine-grained update request is defined as FReq = {o,len, mpey },
where o indicates the starting offset of this update in F, len
indicates the data length after o that needs to be updated (so that
{o,len} can characterize an exact proportion of the original file
F that needs to be updated, which we will later call my), and
Mnew 15 the new message to be inserted into F from offset o.

We assume the data needed to be obsolete and the new
data to be added shares a common starting offset o in F, as

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

2240

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25,

NO. 9, SEPTEMBER 2014

TPA

1. Send challenge request

Css

{SigAUTHI {VID}pk . (i, Vi}iGL}
chal o

2. Fork € [1,w], verify sigayry with VID and t,
then compute:

B = Yier Vit

o =lia Uivi

3. Compute R with {H(m;), Q;}. Verify the following:

1) e(sig, g) = e(H(R),v)

2) e(o, g) = e(w,v)

If all equations hold, return TRUE; otherwise return FALSE

{{ﬁk}keh,w]» {H(m;), Qi}ier sig}

P

Fig. 4. Challenge, Proof Generation and Verification in our scheme.

otherwise it can be split into multiple updates defined in
Definition 2 commencing in sequence. We now introduce a
rule to follow during all update processes:

Condition 1 (Block Size Limits in Updates). An update
operation must not cause the size of any block to exceed syax;
After any operation, a block that has 0 bit data remaining
must be deleted from T.

Detailed analysis can be found in Appendix C, which
can be summarized as the following theorem:

Theorem 1. Any valid fine-grained update request that is in the
form of {o,len, my.,} can either directly belong to, or be split
into some smaller requests that belong to, the following 5 types
of block-level update requests: PM, M, J, D and SP.

Proof. See Appendix C. O

Through the analysis above, we know that a large
number of small updates, no matter insert, delete or mod-
ification, will always invoke a large number of PM op-
erations. We now try to optimize PM operations in the next
section to make it more efficient.

4.5 Modification for Better Support of
Small Updates

Although our proposed scheme can support fine-grained
update requests, the client still needs to retrieve the entire
file block from CSS to compute the new HLA, in the sense
that the client is the only party that has the secret key o to
compute the new HLA but clients do not have F stored
locally. Therefore, the additional cost in communication
will be huge for frequent updates. In this section, we will
propose a modification to address this problem, utilizing
the fact that CSS only needs to send back data in the block
that stayed unchanged.

The framework we use here is identical to the one used
in our scheme introduced in Section 4.2 (which we will also
name as ‘the basic scheme’ hereafter). Changes are made in
Per formUpdate and Veri fyUpdate; Setup, Challenge, Proof
Generation and Verification phases are same as in our basic
scheme. Therefore, we will only describe the two algo-
rithms in the following phase:

4.5.1 Verifiable Data Updating

We also discuss PM operations here first.
Per formUpdate: After CSS has received the update
request UpdateReq from the client, it will parse it as

{PM,I,0,mpe,} and use {o,|myen|} to gather the sectors
that are not involved in this update, which we denote as
{mij};car- €SS will then perform the update to get m;, then
compute R/, then send the proof of update P,due =
Hmijtjenr, H(mi), Qi, R, sig} to the client.

Veri fyUpdate: After the client received H(m;), it will first
compute R using H(m;),Q; and verify sig, then it will
compute m/ using {{mij}jE s Mauew | and then compute R,y
with {m}, Q,;} and compare R, with R". If R,,, = R, then
the client will return {of,sig’} to CSS for it to update
accordingly.

For an SP operation the process will be the same to our
basic scheme as there are no new data inserted into 7T,
therefore the retrieving of the entire data block is inevitable
when computations of ¢/ and o* are required. For other
types of operations, no old data is involved in new blocks;
therefore the processes will also remain the same. The
process is shown in Fig. 5.

4.6 Extensions and Generalizations

Our strategy can also be applied in RSA-based PDP or POR
schemes to achieve authorized auditing and fine-grained
data update requests. As RSA can inherently support
variable-sized blocks, the process will be even easier. The
batch auditing variation in [6], [7] can also be applied to our
scheme, as we did not change the construction of HLAs and
the verifications on them.

For the same reason, the random masking strategy for
privacy preserving proposed in [7] can also be incorpo-
rated into our scheme to prevent TPA from parsing the
challenged file blocks through a series of integrity proofs
to a same set of blocks. Alternatively, we can also restrict
the number of challenges to the same subset of data blocks.
When data updates are frequent enough, the success rate
of this attack will drop dramatically, because there is a
high probability that one or many of the challenged blocks
have already updated before ¢ challenges are completed,
which is the reason we did not incorporate this strategy
into our scheme.

5 SECURITY ANALYSIS

In this section, the soundness and security of our scheme
is discussed separately in phases, as the aim and behavior
of the malicious adversary in each phase of our scheme is
different.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: PUBLIC AUDITING OF BIG DATA WITH FINE-GRAINED UPDATES ON CLOUD

2241

Client

1. Send update (block-level operation) request

3. Compute R with {m,Q,}, verify sig with R. If success, Compose m] with
{UpdateReq, {mij}jEM}' then compute R, with {H(m}), Q,}.
IfR,,, = R"

(8 a
Compute o, = (H(ms) H;iziu;ﬂ”) and sig' = (H(R")"®

{PM,i,0,m 0}

\ 4

UpdateReq 2. Locate m, perform the update, update m; to

m}, compute R’ with {m,Q,}

{{:"‘ ij}jeM: H(m),9,R ',sig}
P

update

{o/,sig'}

B
>

4. Update o, to ¢, and sig to sig’ accordingly.
(fR,.. =R') p i to 0; g g gly

Fig. 5. Verifiable PM-typed Data Update in our modified scheme.

5.1 Challenge and Verification

In the challenge/verification process of our scheme, we try
to secure the scheme against a malicious CSS who tries to
cheat the verifier TPA about the integrity status of the
client’s data, which is the same as previous work on both
PDP and POR. In this step, aside from the new authoriza-
tion process (which will be discussed in detail later in this
section), the only difference compared to [6] is the RMHT
and variable-sectored blocks. Therefore, the security of this
phase can be proven through a process highly similar with
[6], using the same framework, adversarial model and
interactive games defined in [6]. A detailed security proof
for this phase is therefore omitted here.

5.2 TPA Authorization

Security of the new authorization strategy in our scheme is
based on the existential unforgeability of the chosen
signature scheme. We first define the behavior of a
malicious third-party auditor.

Definition 3 (Malicious TPA). A malicious TPA is a third
party who aims at challenging a user’s data stored on CSS for
integrity proof without this user’s permission. The malicious
TPA has access to the entire network.

According to this definition, none of the previous data
auditing schemes is resilient against a malicious TPA.
Now, in our scheme, we have the following theorem:

Theorem 2. Through the authorization process, no malicious
TPA can cause the CSS to respond with an integrity proof P
over an arbitrary subset of file F', namely m;,i € I, unless a
negligible probability.

Proof. See Appendix D. O

From this theorem, we can see that the security of a
public auditing scheme is strengthened by adding the
authorization process. In fact, the scheme is now resilient
against malicious or pretended auditing requests, as well
as potential DDOS attacks launched by malicious auditors.

For even higher security, the client may mix in a nonce to
the authorization message to make every auditing message
distinct, so that no one can utilize a previous authorization
message. However, this setting may not be appropriate for
many scenarios, as the client must stay online when each
auditing happens.

5.3 Verifiable Data Updating

In the verifiable updating process, the main adversary is the
untrustworthy CSS who did not carry out the data update
successfully, but still manages to return a satisfactory
response to the client thereafter. We now illustrate the security
of this phase of our scheme in the following theorem:

Theorem 3. In the verifiable update process in both our basic
scheme and the modification, CSS cannot provide the client
with the satisfactory result, i.e., R' cannot match the Ry,
computed by the client with {H(m}),Q;}, if CSS did not
update the data as requested.

Proof. See Appendix D. O

Note that in the verifiable update process, data retrieval
is a part of the verifiable update process. According to
Assumption 1, CSS will respond this query with the correct
m;;. If not with Assumption 1, it is recommended to indepen-
dently retrieve {m;;} ., before the update so that CSS cannot
cheat the client intentionally, as it cannot distinguish
whether the following update is based on this retrieval.

If CSS can be trusted even more, the client may let CSS
compute (u;”)" (where m;; are the sectors that did not
change) and send it back to the client, then the client will be
able to compute ¢’ using it along with m,,.,, and H(m;). This
will keep the communication cost of this phase on a
constantly low level. However, as the CSS is only
considered semi-trusted and it is difficult for the client to
verify (u;")" without m;;, this assumption is unfortunately
too strong for the majority of scenarios.

6 EVALUATION AND EXPERIMENTAL RESULTS

We have provided an overall evaluation and comparison in
Appendix E.

We conducted our experiments on U-Cloud—a cloud
computing environment located in University of Technol-
ogy, Sydney (UTS). The computing facilities of this system
are located in several labs in the Faculty of Engineering and
IT, UTS. On top of hardware and Linux OS, We installed
KVM Hypervisor [26] which virtualizes the infrastructure
and allows it to provide unified computing and storage
resources. Upon virtualized data centers, Hadoop [27] is
installed to facilitate the MapReduce programming model
and distributed file system. Moreover, we installed OpenStack

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

2242

open source cloud platform [28] which is responsible for
global management, resource scheduling, task distribution
and interaction with users.

We implemented both our scheme and its modification
on U-Cloud, using a virtual machine with 36 CPU cores,
32GB RAM and 1TB storage in total. As in previous work
[6], [12], we also used a 1GB randomly generated dataset
for testing. The scheme is implemented under 80-bit
security, i.e., n = |p| = 160 bits. As the number of sectors s
(per block) is one of the most influential metrics to overall
performance, we will use it as our primary metrics. For
saving of the first wave of allocated storage, we used
Si = Smayx in the initial data splitting and uploading. Note
that s,,.x decides the total number of blocks for an arbitrary
|F|. However, according to [10], the number of authenti-
cated blocks is a constant with respect to a certain
percentage of file tampered and a certain success rate of
detection, therefore we will not take the number of audited
blocks as our primary variable of measurement. All
experimental results are an average of 20 runs.

We first tested how s, can influence the size of proof
P, which is missing in former schemes [6], [7]. From Fig. 6,
we can see that generally the proof size decreases when
Smax increases, because the average depth of leaf nodes m;
of T decreases when s,,,, increases to a certain level, es-
pecially when right after the initial uploading of 7. Note
that the storage of HLA and RMHT at CSS side will also
decrease with the increase of the average number of blocks.
Therefore, a relatively large sy.x (but not too large, which
we will discuss along with the third experiment) is re-
commended in our dynamic setting.

Second, we tested the storage overhead for small
insertions. Without support for fine-grained updates, every
small insertion will cause creation of a whole new block
and update of related MHT nodes, which is why our
scheme has efficiency advantage. We compared our
scheme against a representative (and also recent) public
auditing scheme [6]. For comparison, we extended the
older scheme a bit to let it support the communication-
storage trade-off introduced in [15] so that it can support
larger file blocks with multiple (but only a predefined
constant number of) sectors each. The updates chosen for
experiments are 10 * 140 Bytes and 10 = 280 Bytes, filled
with random data. Results are shown in Figs. 7 and 8. For
updates of the same total size, the increased storage on CSS

240

230+

220+

210+

200

ProofSize (KB)

190

180

170+
10 20 30 40 50 60 70 80 90 100
Max number of sectors per block

Fig. 6. Communication overhead invoked by an integrity proof with 80-bit
security under different s,,., for a 1GB data.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO.9, SEPTEMBER 2014

12

10

M Our Scheme

Storage taken (KB)
()]
_—

M Direct Extension of [6]

5 10 15 20 25 30 35 40 45 50
Number of sectors in the i-th block

Fig. 7. Comparison of the total storage overhead invoked by 10« 140-byte
insertions to the i-th block in our scheme, as opposed to the direct
extension of [6].

for our scheme stays constant, while in the extended old
scheme [6] (see Section 3.2.2) the storage increases linearly
with the increase in size of the affected block. These results
demonstrated that our scheme with fine-grained data
update support can incur significantly lower storage
overhead (down to 0.14x in our test scenarios) for small
insertions when compared to existing scheme.

Third, we investigated the performance improvement
of the modification introduced in Section 4.5. We used
3 pieces of random data with sizes of 100 bytes, 140 bytes
and 180 bytes, respectively, to update several blocks that
contain 10 to 50 standard 20-byte sectors each. Data
retrieval is a key factor of communication overheads in
the verifiable update phase. For each update, we recorded
the total amount of data retrieval for both our modified
scheme and our basic scheme. The results in comparison are
shown in Fig. 9. We can see that our modified scheme always
has better efficiency with respect to data-retrieval-invoked
communication overheads, and the advantage is more
significant for larger updates. However, for an update of the
same size, the advantage will decrease with the increase of
|si| where a larger number of sectors in the original file are
needed to be retrieved. Therefore, the block size needs to be
kept low if less communication in verifiable updates is
highly demanded.

From the experimental results on small updates, we can
see that our scheme can incur significantly lower storage
overhead while our modified scheme can dramatically
reduce communication overheads compared to the existing
scheme. In practice, the important parameter sy, should

12

10

M Our Scheme

Storage taken (KB)
(o))

M Direct Extension of [6]

5 20! 15 20 25 30 35 40 ‘45 50
Number of sectors in the i-th block

Fig. 8. Comparison of the total storage overhead invoked by 10x 280-byte
insertions to the i-th block in our scheme, as opposed to the direct
extension of [6].

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: PUBLIC AUDITING OF BIG DATA WITH FINE-GRAINED UPDATES ON CLOUD

100 ‘

HEN

=N

301
204+—m———=
10
0+ L T =T —
10 20 30 40 50
Number of sectors in the i-th block

== 180 byte update

== 140 byte update

100 byte update

Less data retrieved percentage

Fig. 9. Percentage in saving of communication overhead in data retrieval
in the modified scheme, compared to our basic scheme.

be carefully chosen according to different data size and
different efficiency demands in storage or communica-
tions. For example, for general applications with a similar
scale (1GB per dataset and frequent 140-byte updates), a
choice of sy,x =30 will allow the scheme to incur sig-
nificantly lowered overheads in both storage and commu-
nications during updates. Additional analysis regarding
efficiency can be found in Appendix F.

7 CONCLUSION AND FUTURE WORK

In this paper, we have provided a formal analysis on
possible types of fine-grained data updates and proposed a
scheme that can fully support authorized auditing and
fine-grained update requests. Based on our scheme, we
have also proposed a modification that can dramatically
reduce communication overheads for verifications of small
updates. Theoretical analysis and experimental results
have demonstrated that our scheme can offer not only
enhanced security and flexibility, but also significantly
lower overheads for big data applications with a large
number of frequent small updates such as applications in
social media and business transactions.

Based on the contributions of this paper on improved
data auditing, we plan to further investigate the next step
on how to improve other server-side protection methods
for efficient data security with effective data confidentiality
and availability. Besides, we also plan to investigate
auditability-aware data scheduling in cloud computing.
As data security is also considered as a metric of quality-of-
service (QoS) along with other metrics such as storage and
computation, a highly efficient security-aware scheduling
scheme will play an essential role under most cloud
computing contexts.

ACKNOWLEDGMENT

This research work is partly supported by Australian
Research Council under Linkage Project LP0990393.

REFERENCES

[1] R. Buyya, C.S. Yeo, S. Venugopal,]J. Broberg, and I. Brandic,
“Cloud Computing and Emerging IT Platforms: Vision, Hype,
Reality for Delivering Computing as the 5th Utility,”” Future Gen.
Comput. Syst., vol. 25, no. 6, pp. 599-616, June 2009.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

2243

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, ““A View of
Cloud Computing,” Commun. ACM, vol. 53, no. 4, pp. 50-58,
Apr. 2010.

Customer Presentations on Amazon Summit Australia, Sydney,
2012, accessed on: March 25, 2013. [Online]. Available: http://
aws.amazon.com/apac/awssummit-au/

J. Yao, S. Chen, S. Nepal, D. Levy, and J. Zic, “TrustStore: Making
Amazon S3 Trustworthy With Services Composition,” in Proc.
10th IEEE/ACM Int’l Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2010, pp. 600-605.

D. Zissis and D. Lekkas, “Addressing Cloud Computing Secu-
rity Issues,”” Future Gen. Comput. Syst., vol. 28, no. 3, pp. 583-592,
Mar. 2011.

Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, ““Enabling Public
Auditability and Data Dynamics for Storage Security in Cloud
Computing,” IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 5,
pp- 847-859, May 2011.

C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-Preserving
Public Auditing for Data Storage Security in Cloud Computing,”
in Proc. 30st IEEE Conf. on Comput. and Commun. (INFOCOM),
2010, pp. 1-9.

G. Ateniese, R.D. Pietro, L.V. Mancini, and G. Tsudik, ““Scalable
and Efficient Provable Data Possession,”” in Proc. 4th Int’l
Conf. Security and Privacy in Commun. Netw. (SecureCommy),
2008, pp. 1-10.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner,
Z. Peterson, and D. Song, “Remote Data Checking Using Provable
Data Possession,” ACM Trans. Inf. Syst. Security, vol. 14, no. 1, May
2011, Article 12.

G. Ateniese, RB. Johns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable Data Possession at Untrusted Stores,” in
Proc. 14th ACM Conf. on Comput. and Commun. Security (CCS), 2007,
pp- 598-609.

R. Curtmola, O. Khan, R.C. Burns, and G. Ateniese, ““MR-PDP:
Multiple-Replica Provable Data Possession,” in Proc. 28th IEEE
Conf. on Distrib. Comput. Syst. (ICDCS), 2008, pp. 411-420.

C. Erway, A. Kiipgii, C. Papamanthou, and R. Tamassia,
““Dynamic Provable Data Possession,” in Proc. 16th ACM Conf.
on Comput. and Commun. Security (CCS), 2009, pp. 213-222.

Y. Zhu, H. Hu, G.-]. Ahn, and M. Yu, “Cooperative Provable
Data Possession for Integrity Verification in Multi-Cloud Storage,”
IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2231-2244,
Dec. 2012.

A. Juels and B.S. Kaliski Jr., “PORs: Proofs of Retrievability for
Large Files,” in Proc. 14th ACM Conf. on Comput. and Commun.
Security (CCS), 2007, pp. 584-597.

H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
in Proc. 14th Int’l Conf. on Theory and Appl. of Cryptol. and Inf.
Security (ASIACRYPT), 2008, pp. 90-107.

S. Nepal, S. Chen, J. Yao, and D. Thilakanathan, ““DIlaaS: Data
Integrity as a Service in the Cloud,” in Proc. 4th Int’l Conf. on
Cloud Computing (IEEE CLOUD), 2011, pp. 308-315.

Y. He, S. Barman, and J.F. Naughton, “Preventing Equivalence
Attacks in Updated, Anonymized Data,”” in Proc. 27th IEEE Int’l
Conf. on Data Engineering (ICDE), 2011, pp. 529-540.

E. Naone, ““What Twitter Learns From All Those Tweets,”” in
Technology Review, Sept. 2010, accessed on: March 25, 2013.
[Online]. Available: http://www.technologyreview.com/
view /420968 /what-twitter-learns-from-all-those-tweets /

X. Zhang, L.T. Yang, C. Liu, and J. Chen, ““A Scalable Two-Phase
Top-Down Specialization Approach for Data Anonymization
Using MapReduce on Cloud,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 2, pp. 363-373, Feb. 2014.

S.E. Schmidt, ““Security and Privacy in the AWS Cloud,”
presented at the Presentation Amazon Summit Australia,
Sydney, Australia, May 2012, accessed on: March 25,2013. [Online].
Available: http:/ /aws.amazon.com/apac/awssummit-au/

C. Liu, X. Zhang, C. Yang, and J. Chen, “CCBKE—Session Key
Negotiation for Fast and Secure Scheduling of Scientific
Applications in Cloud Computing,” Future Gen. Comput. Syst.,
vol. 29, no. 5, pp. 1300-1308, July 2013.

X. Zhang, C. Liu, S. Nepal, S. Panley, and J. Chen, “A Privacy
Leakage Upper-Bound Constraint Based Approach for Cost-
Effective Privacy Preserving of Intermediate Datasets in Cloud,”
IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 6, pp. 1192-1202,
June 2013.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

2244

[23] D. Boneh, H. Shacham, and B. Lynn, “Short Signatures From the
Weil Pairing,” J. Cryptol., vol. 17, no. 4, pp. 297-319, Sept. 2004.

[24] G. Ateniese, S. Kamara, and J. Katz, “"Proofs of Storage From
Homomorphic Identification Protocols,”” in Proc. 15th Int’l Conf.
on Theory and Appl. of Cryptol. and Inf. Security (ASIACRYPT),
2009, pp. 319-333.

[25] R.C. Merkle, “A Digital Signature Based on a Conventional

Encryption Function,” in Proc. Int’l Cryptol. Conf. on Adv. in

Cryptol. (CRYPTO), 1987, pp. 369-378.

KVM Hypervisor, accessed on: March 25, 2013. [Online].

Available: www linux-kvm.org/

Hadoop MapReduce. [Online]. Available: http://hadoop.

apache.org

OpensStack Open Source Cloud Software, accessed on: March 25,

2013. [Online]. Available: http://openstack.org/

[26]
[27]

(28]

Chang Liu received BEng and MSc degrees
from Shandong University, China. He is currently
pursuing the PhD degree at Faculty of Engi-
neering and IT, University of Technology
Sydney, Australia. His research interests include
cloud and distributed computing, resource man-
agement, cryptography and data security.

T
i lig\

Jinjun Chen received the PhD degree in computer
science and software engineering from Swinburne
University of Technology, Australia. He is an
Associate Professor from Faculty of Engineering
and IT, University of Technology Sydney (UTS),
Australia. He is the Director of Lab of Cloud
Computing and Distributed Systems at UTS. His
research interests include cloud computing, big
data, workflow management, privacy and security,
and related various research topics. His research
results have been published in more than 100
papers in high quality journals and at conferences, including IEEE
Transactions on Service Computing, ACM Transactions on Autonomous
and Adaptive Systems, ACM Transactions on Software Engineering and
Methodology (TOSEM), IEEE Transactions on Software Engineering
(TSE), and IEEE Transactions on Parallel and Distributed Systems
(TPDS). He received Swinburne Vice-Chancellor's Research Award for
early career researchers (2008), |IEEE Computer Society Outstanding
Leadership Award (2008-2009) and (2010-2011), IEEE Computer Society
Service Award (2007), Swinburne Faculty of ICT Research Thesis
Excellence Award (2007). He is an Associate Editor for IEEE Transactions
on Parallel and Distributed Systems. He is the Vice Chair of IEEE Computer
Society’s Technical Committee on Scalable Computing (TCSC), Vice Chair
of Steering Committee of Australasian Symposium on Parallel and
Distributed Computing, Founder and Coordinator of IEEE TCSC Technical
Area on Workflow Management in Scalable Computing Environments,
Founder and steering committee co-chair of International Conference on
Cloud and Green Computing, and Intemational Conference on Big Data and
Distributed Systems. He is a Senior Member of IEEE.

Laurence T. Yang received the BE degree in
computer science and technology from Tsinghua
University, Beijing, China, and the PhD degree in
computer science from the University of Victoria,
Victoria, BC, Canada. He is a Professor in School of
Computer Science and Technology, Huazhong
University of Science and Technology, China and
in Department of Computer Science, St. Francis
Xavier University, Canada. His current research
interests include parallel and distributed computing,
embedded and ubiquitous computing. His research
has been supported by National Sciences and Engineering Research
Council, Canada and Canada Foundation for Innovation. He is a member
of IEEE.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO.9, SEPTEMBER 2014

Xuyun Zhang received the BS and MS degrees in
computer science from Nanjing University, China,
and is currently working towards the PhD degree at
the Faculty of Engineering & IT, University of Tech-
nology, Sydney, Australia. His research interests
include cloud computing, privacy and security, Big
Data, MapReduce and OpenStack. He has pub-
lished several papers in refereed international
journals including IEEE Transactions on Parallel
and Distributed Systems (TPDS).

Chi Yang received the BS degree from Shandong
University At Weihai, China, the MS (by research)
degree in computer science from Swinburne
University of Technology, Melbourne, Australia, in
2007, and is currently pursuing full-time the PhD
degree at the University of Technology, Sydney,
Australia. His major research interests include
distributed computing, XML data stream, scientific
workflow, Distributed System, Green Computing,
Big Data Processing and Cloud Computing.

Rajiv Ranjan received the PhD degree in
engineering from the University of Melbourne,
Australia, in 2009. He is a Research Scientist
and a Julius Fellow in CSIRO Computational
Informatics Division (formerly known as CSIRO
ICT Centre). His expertise is in datacenter cloud
computing, application provisioning, and perfor-
mance optimization. He has published 62 scien-
tific, peer-reviewed papers (7 books, 25 journals,
25 conferences, and 5 book chapters). His h-index
is 20, with a lifetime citation count of 1660+ (Google
Scholar). His papers have also received 140+ IS citations. Seventy percent
of his journal papers and 60 percent of conference papers have been A*/A
ranked ERA publication. Dr. Ranjan has been invited to serve as the Guest
Editor for leading distributed systems journals including /EEE Transactions
on Cloud Computing, Future Generation Computing Systems, and
Software Practice and Experience. One of his papers was in 2011’s top
computer science journal, IEEE Communication Surveys and Tutorials.

Ramamohanarao (Rao) Kotagiri received the
PhD degree from Monash University. He was
awarded the Alexander von Humboldt Fellow-
ship in 1983. He has been at the University of
Melbourne since 1980 and was appointed as a
Professor in computer science in 1989. He has
held several senior positions including Head of
Computer Science and Software Engineering,
Head of the School of Electrical Engineering and
Computer Science at the University of Melbourne
and Research Director for the Cooperative Re-
search Centre for Intelligent Decision Systems. He served on the editorial
boards of the Computer Journal. At present, he is on the editorial boards
of Universal Computer Science, and Data Mining, /IEEE Transactions on
Knowledge and Data Engineering and VLDB (Very Large Data Bases)
Journal. Dr. Kotagiri was the program cochair for VLDB, PAKDD,
DASFAA, and DOOD conferences. He is a steering committee member
of IEEE ICDM, PAKDD, and DASFAA. He received a Distinguished
Contribution Award for Data Mining. He is a fellow of the Institute of
Engineers Australia, the Australian Academy Technological Sciences
and Engineering, and the Australian Academy of Science. He was
awarded a Distinguished Contribution Award in 2009 by the Computing
Research and Education Association of Australasia.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: National Taiwan University. Downloaded on December 10,2020 at 09:09:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

