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Abstract—Search over encrypted data is a critically important
enabling technique in cloud computing, where encryption-before-
outsourcing is a fundamental solution to protecting user data
privacy in the untrusted cloud server environment. Many secure
search schemes have been focusing on the single-contributor
scenario, where the outsourced dataset or the secure searchable
index of the dataset are encrypted and managed by a single
owner, typically based on symmetric cryptography. In this paper,
we focus on a different yet more challenging scenario where
the outsourced dataset can be contributed from multiple owners
and are searchable by multiple users, i.e. multi-user multi-
contributor case. Inspired by attribute-based encryption (ABE),
we present the first attribute-based keyword search scheme
with efficient user revocation (ABKS-UR) that enables scalable
fine-grained (i.e. file-level) search authorization. Our scheme
allows multiple owners to encrypt and outsource their data to
the cloud server independently. Users can generate their own
search capabilities without relying on an always online trusted
authority. Fine-grained search authorization is also implemented
by the owner-enforced access policy on the index of each file.
Further, by incorporating proxy re-encryption and lazy re-
encryption techniques, we are able to delegate heavy system
update workload during user revocation to the resourceful semi-
trusted cloud server. We formalize the security definition and
prove the proposed ABKS-UR scheme selectively secure against
chosen-keyword attack. Finally, performance evaluation shows
the efficiency of our scheme.

I. INTRODUCTION

Cloud computing has emerged as a new enterprise IT

architecture. Many companies are moving their applications

and databases into the cloud and start to enjoy many un-

paralleled advantages brought by cloud computing, such as

on-demand computing resource configuration, ubiquitous and

flexible access, considerable capital expenditure savings, etc.

However, privacy concern has remained a primary barrier

preventing the adoption of cloud computing by a broader range

of users/applications. When sensitive data are outsourced to

the cloud, data owners naturally become concerned with the

privacy of their data in the cloud and beyond. Encryption-

before-outsourcing has been regarded as a fundamental means

of protecting user data privacy against the cloud server [1],

[2], [3]. However, how the encrypted data can be effective-

ly utilized then becomes another new challenge. Significant

attention has been given and much effort has been made to

address this issue, from secure search over encrypted data

[4], secure function evaluation [5], to fully homeomorphic

encryption systems [6] that provide generic solution to the

problem in theory but are still too far from being practical

due to the extremely high complexity.

This paper focuses on the problem of search over encrypt-

ed data, which is an important enabling technique for the

encryption-before-outsourcing privacy protection paradigm in

cloud computing, or in general in any networked information

system where servers are not fully trusted. Much work has

been done, with majority focusing on the single-contributor

scenario, i.e. the dataset to be searched is encrypted and

managed by a single entity, which we call owner or contrib-

utor in this paper. Under this setting, to enable search over

encrypted data, the owner has to either share the secret key

with authorized users [4], [7], [8], or stay online to generate

the search trapdoors, i.e. the “encrypted” form of keywords

to be searched, for the users upon request [9], [10]. The same

symmetric key will be used to encrypt the dataset (or the

searchable index of the dataset) and to generate the trapdoors.

These schemes seriously limit the users’ search flexibility.

Consider a file sharing system that hosts a large number

of files, contributed from multiple owners and to be shared

among multiple users (e.g. 4shared.com, mymedwall.com).

This is a more challenging multi-owner multi-user scenario.

How to enable multiple owners to encrypt and add their data

to the system and make it searchable by other users? Moreover,

data owners may desire fine-grained search authorization that

only allows their authorized users to search their contributed

data. By fine-grained, we mean the search authorization is

controlled at the granularity of per file level. Symmetric cryp-

tography based schemes [4], [7], [8] are clearly not suitable

for this setting due to the high complexity of secret key man-

agement. Although authorized keyword search can be realized

in single-owner setting by explicitly defining a server-enforced

user list that takes the responsibility to control legitimate users’

search capabilities [11], [12], i.e. search can only be carried

out by the server with the assistance of legitimate users’

complementary keys on the user list, these schemes did not978-1-4799-3360-0/14/$31.00 c© 2014 IEEE
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realize fine-grained owner-enforced search authorization and

thus are unable to provide differentiated access privileges for

different users within a dataset. Asymmetric cryptography is

better suited to this dynamic setting by encrypting individual

contribution with different public keys. For example, Hwang et

al. [13] implicitly defined a user list for each file by encrypting

the index of the file with all the public keys of the intended

users. However, extending such user list approach to the multi-

owner setting and on a per file basis is not trivial as it would

impose significant scalability issue considering a potential

large number of users and files supported by the system.

Additional challenges include how to handle the updates of

the user lists in the case of user enrollment, revocation, etc.,

under the dynamic cloud environment.
In this paper, we address these open issues and present

an authorized keyword search scheme over encrypted cloud

data with efficient user revocation in the multi-user multi-data-

contributor scenario. We realize fine-grained owner-enforced

search authorization by exploiting ciphertext policy attribute-

based encryption (CP-ABE) technique. Specifically, the data

owner encrypts the index of each file with an access policy cre-

ated by him/her, which defines what type of users can search

this index. The data user generates the trapdoor independently

without relying on an always online trusted authority (TA).

The cloud server (CS) can search over the encrypted indexes

with the trapdoor on a user’s behalf, and then returns matching

results if and only if the user’s attributes associated with the

trapdoor satisfy the access policies embedded in the encrypted

indexes. We differentiate attributes and keywords in our de-

sign. Keywords are actual content of the files while attributes

refer to the properties of users. The system only maintains a

limited number of attributes for search authorization purpose.

Data owners create the index consisting of all keywords in

the file but encrypt the index with an access structure only

based on the attributes of authorized users, which makes the

proposed scheme more scalable and suitable for the large

scale file sharing system. In order to further release the data

owner from the burdensome user membership management,

we use proxy re-encryption [14] and lazy re-encryption [15]

techniques to shift the workload as much as possible to the

CS, by which our proposed scheme enjoys efficient user

revocation. Formal security analysis shows that the proposed

scheme is provably secure and meets various search privacy

requirements. Performance evaluation also demonstrates its

efficiency and practicality.
Our contributions can be summarized as follows:

1) We design a novel and scalable authorized keyword

search over encrypted data scheme supporting multiple

data users and multiple data contributors. Compared

with existing works, our scheme supports fine-grained

owner-enforced search authorization at the file level with

better scalability for large scale system in that the search

complexity is linear to the number of attributes in the

system, instead of the number of authorized users.

2) Data owner can delegate most of computationally inten-

sive tasks to the CS, which makes the user revocation

process efficient and is more suitable for cloud outsourc-

ing model.

3) We formally prove our proposed scheme selectively

secure against chosen-keyword attack.

II. RELATED WORK

A. Keyword Search over Encrypted Data

1) Secret key vs. Public key: Encrypted data search has

been studied extensively in the literature. Song et al. [4]

designed the first searchable encryption scheme to enable a

full text search over encrypted files. Since this seminal work,

many secure search schemes have been proposed to boost the

efficiency and enrich the search functionalities based on either

secret-key cryptography (SKC) [7], [8], [9], [10] or public-

key cryptography (PKC) [16], [17], [18]. Curtmola et al. [7]

presented an efficient single keyword encrypted data search

scheme by adopting inverted index structure. The authors in [8]

designed a dynamic version of [7] with the ability to add

and delete files efficiently. To enrich search functionalities,

Cao et al. [9] proposed the first privacy-preserving multi-

keyword ranked search scheme over encrypted cloud data us-

ing “coordinate matching” similarity measure. Later on, Sun et

al. [10] presented a secure multi-keyword text search scheme

in the cloud enjoying more accurate search results by “cosine

similarity measure” in the vector space model and practically

efficient search process using a tree-based secure index struc-

ture. Compared with symmetric search techniques, PKC-based

search schemes are able to generate more flexible and more

expressive search queries. In [16], Boneh et al. devised the first

PKC-based encrypted data search scheme supporting single

keyword query. The scheme from [17] supports search queries

with conjunctive keywords by explicitly indicating the number

of encrypted keywords in an index. Predicate encryption [18],

[19] is another promising technique to fulfill the expressive

secure search functionality. For example, the proposed scheme

in [18] supports conjunctive, subset, and range queries, and

disjunctions, polynomial equations, and inner products could

be realized in [19].

2) Authorized keyword search: To grant multiple users the

search capabilities, user authorization should be enforced.

In [11], [12], the authors adopt a server-enforced user list

containing all the legitimate users’ complementary keys that

are used to help complete the search in the enterprise scenario

to realize search authorization. But these SKC-based schemes

only allow one data contributor in the system. Hwang et

al. [13] in the public-key setting presented a conjunctive

keyword search scheme in multi-user multi-owner scenario.

But this scheme is not scalable under the dynamic cloud envi-

ronment because the size of the encrypted index and the search

complexity is proportional to the number of the authorized

users, and to add a new user, the data owner has to rewrite all

the corresponding indexes. By exploiting hierarchical predicate

encryption, Li et al. [20] proposed a file-level authorized

private keyword search (APKS) scheme over encrypted cloud

data. However, it incurs additional communication cost, since
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whenever users want to search, they have to resort to the

attribute authority to acquire the search capabilities. Moreover,

this scheme is more suitable for the structured database that

contains only limited number of keywords. The search time

there is proportional to the total number of keywords in the

system, which would be inefficient for arbitrarily-structured

data search, e.g., free text search, in the case of dynamic file

sharing system.

B. Attribute-based Encryption

There has been a great interest in developing attribute-

based encryption [21], [22], [23], [24] due to its fine-grained

access control property. Goyal et al. [21] designed the first key

policy attribute-based encryption (KP-ABE) scheme, where

ciphertext can be decrypted only if the attributes that are

used for encryption satisfy the access structure on the user

private key. Under the reverse situation, CP-ABE allows user

private key to be associated with a set of attributes and

ciphertext associated with an access structure. CP-ABE is a

preferred choice when designing an access control mechanism

in a broadcast environment. Since the first construction of

CP-ABE [22], many works have been proposed for more

expressive, flexible and practical versions of this technique.

Cheung et al. [23] proposed a selectively secure CP-ABE

construction in the standard model using the simple boolean

function, i.e. AND gate. By adopting proxy re-encryption and

lazy re-encryption techniques, Yu et al. [24] also devised a

selectively secure CP-ABE scheme with the ability of attribute

revocation, which is perfectly suitable for the data-outsourced

cloud model.

III. PROBLEM FORMULATION

A. System Model

The system framework of our proposed ABKS-UR scheme

involves three entities: cloud server, many data owners, and

many data users, as shown in Fig. 1. In addition, a trusted au-

thority is implicitly assumed to be in charge of generating and

distributing public keys, private keys and re-encryption keys.

To enforce fine-grained authorized keyword search, the data

owner generates the secure indexes with attribute-based access

policies before outsourcing them along with the encrypted data

into the CS. Note that we can encrypt data by any secure

encryption technique, such as AES, which is outside the scope

of this paper. To search the datasets contributed from various

data owners, a data user generates a trapdoor of keyword of

interest using his/her private key and submits it to the CS. We

adopt the per-dataset user list to enforce the coarse-grained

dataset search authorization. Thus, our scheme benefits from

search process acceleration as search does not need to go to a

particular dataset if the user is not on the corresponding user

list. Notably, even with the per-dataset user list in place, the

enforcement of the search authorization is still controlled by

the owner-defined access policy, i.e. the CS will search the

corresponding datasets and return the valid search results to

the user if and only if the attributes of the user on the trapdoor

Data user 1Data owner 1

Data owner 2

Data owner n

...

Cloud Server
Data user 2

Data user m

...

Access structure for an index: 
attr1 AND attr2 AND  ...

User attribute set:
{attr1, attr3, attr8,  ...}

Encrypted files & secure indexes Trapdoor

Access policies 
& user list

... ...

Fig. 1. Framework of authorized keyword search over encrypted cloud data.

satisfy the access policies of the secure indexes of the returned

files, and the intended keyword is found in these files.

B. Threat Model

We consider the CS honest-but-curious, which is also em-

ployed by related works on secure search over encrypted data

[9], [10], [20]. We assume that the CS honestly follows the

designated protocol, but curiously infers additional privacy

information based on the data available to him. Furthermore,

malicious data users may collude to access files beyond their

access privileges by using their secret keys. Analogue to

[24], as we delegate most of the system update workload

to the CS, we assume that the CS will not collude with the

revoked malicious users to help them gain unauthorized access

privileges.

C. Design Goals

Our proposed ABKS-UR scheme in the cloud aims to

achieve the following functions and security goals:

Authorized Keyword Search: The secure search system

should enable data-owner-enforced search authorization, i.e.

only users that meet the owner-defined access policy can

obtain the valid search results. Besides achieving fine-grained

authorization, another challenge is to make the scheme scal-

able for dynamic cloud environment.

Supporting Multiple Data Contributors and Data Users:

The designed scheme should accommodate many data con-

tributors and data users. Each user is able to search over the

encrypted data contributed from multiple data owners.

Efficient User Revocation: Another important design goal

is to efficiently revoke users from the current system while

minimizing the impact on the remaining legitimate users.

Security Goals: In this paper, we are mainly concerned

with secure search related privacy requirements, and define

them as follows. 1) Keyword semantic security: as a novel

attribute-based keyword search technique, we will formally

prove our proposed ABKS-UR scheme is semantically secure

against chosen keyword attack under selective ciphertext policy

model (IND-sCP-CKA). The related security definition and

semantic security game used in the proof are presented in

Appendix.A. 2) Trapdoor unlinkability: this security property

makes the CS unable to visually distinguish two or more
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trapdoors even containing the same keyword. Note that we

do not intend to protect predicate privacy as the attacker may

launch dictionary attack to deduce the underlying keyword in a

particular trapdoor by generating arbitrary number of indexes

with keyword of his choice, and this privacy breach cannot be

protected inherently for any public key based encrypted data

search scheme [25]. Moreover, we do not aim to protect access

pattern in this paper due to the extremely high complexity, i.e.

to protect it, algorithm has to “touch” the whole dataset [26].

IV. THE PROPOSED AUTHORIZED KEYWORD SEARCH

We exploit the CP-ABE [23], [24] technique to achieve s-

calable fine-grained authorized keyword search over encrypted

cloud data supporting multiple data owners and data users.

Specifically, for each file, the data owner generates an access-

policy-protected secure index, where the access structure is

expressed as a series of AND gates. Only authorized users with

attributes satisfying the access policies can obtain matching

results. Otherwise, they have no means to tell whether the

search failure comes from a keyword mismatch or an autho-

rization failure. Moreover, we should consider user member-

ship management carefully in the multi-user setting. A naı̈ve

solution is to impose the burden on each data owner. As a

result, data owner is required to be always online to promptly

respond the membership update request, which is impractical

and inefficient. By using proxy re-encryption [14], the data

owner can delegate most of the workload to the cloud without

infringing search privacy.

A. Algorithm Definition

Let N denote the universal attribute set {1, ..., n} for some

nature number n. We refer to attributes i and their negations ¬i
as literals. I ⊆ N is the attribute set used for access structure

on encrypted index and here we consider a series of AND gates∧
i∈I i (literal i is either positive i or negative ¬i). S ⊆ N is

the attribute set for user secret key.

Definition 1: An attribute-based keyword search with effi-

cient user revocation scheme for keyword space W and access

structure space G consists of nine fundamental algorithms as

follows:

• Setup(λ,N ) → (PK,MK): The setup algorithm takes

as input the security parameter λ and an attribute universe

description N . It defines a bilinear group G of prime

order p with a generator g. Thus, a bilinear map is

defined as e : G×G → G1, which has the properties of

bilinearity, computability and non-degeneracy. It outputs

the public parameters PK and the master secret key

MK . The version number ver is initialized as 1.

• CreateUL(PK, ID) → UL: The user list generation

algorithm takes as input the public parameters PK and

the user identity ID. It outputs the user list UL for a

dataset.

• EncIndex(PK,GT,w) → D: The index encryption

algorithm takes as input the current public parameters

PK , the access structure GT ∈ G, a keyword w ∈ W
and outputs the encrypted index D.

• KeyGen(PK,MK,S) → SK: The key generation algo-

rithm takes as input the current public parameters PK ,

the current master secret key MK , and the attribute set

S associated with a particular user. It outputs the user’s

secret key SK .

• ReKeyGen(Φ,MK) → (rk,MK ′, PK ′): The re-

encryption key generation algorithm takes as input the

attribute set Φ that contains the attributes to be updated,

and the current system master key MK . It outputs a set

of proxy re-encryption keys rk for all the attributes in

N , the updated MK ′ and PK ′, where all the version

numbers are increased by 1. For the attributes not in Φ,

set their proxy re-encryption keys as 1 in rk.

• ReEncIndex(Δ, rk,D) → D′: It takes as input an

encrypted index D, the re-encryption key set rk and the

attribute set Δ that includes all the attributes in D’s access

structure with the re-encryption keys not being 1 in rk.

Then it outputs a new re-encrypted index D′.

• ReKey(Ω, rk, PSK) → PSK ′: It takes as input a user’s

partial secret key PSK , the re-encryption key set rk and

the attribute set Ω that contains all the attributes in PSK
with the re-encryption keys not being 1 in rk. Finally, it

outputs a new PSK ′ for that user.

• GenTrapdoor(PK,SK,w′) → Q: The trapdoor genera-

tion algorithm takes as input the current public key PK ,

the user’s private key SK , a keyword of interest w′ ∈ W
and outputs the trapdoor Q for the keyword w′.

• Search(UL,D,Q) → search results or ⊥: The search

algorithm takes as input the user list UL, the index D
and the user’s trapdoor Q. It outputs valid search results

or returns a search failure indicator ⊥.

B. Construction for ABKS-UR

In this subsection, we will describe the concrete ABKS-UR

construction from the viewpoint of system level based on the

above defined algorithms. The system level operations include

System Setup, New User Enrollment, Secure Index Generation,

Trapdoor Generation, Search, and User Revocation. Notice

that each individual system level operation may invoke one or

more low level algorithms.

System Setup The TA calls the Setup algorithm to gener-

ate PK and MK . Specifically, it selects random elements

t1, ..., t3n. Define a collision-resistant hash function H :
{0, 1}∗ → Zp. Let Tk = gtk for each k ∈ {1, ..., 3n} such that

for 1 ≤ i ≤ n, Ti are referred to as positive attributes, Tn+i are

for negative ones, and T2n+i are thought of as don’t care. Let

Y be e(g, g)y . The public key is PK := 〈e, g, Y, T1, ..., T3n〉
and the master key is MK := 〈y, t1, ..., t3n〉. The initial

version number ver is 1. The TA publishes (ver, PK) with the

signature of each component of PK , and retains (ver,MK).

New User Enrollment When receiving a registration request

from a new legitimate user f , the TA first selects a random

xf ∈ Zp as a new MK component. Then, the TA generates a

new PK component Y ′
f = Y xf and publishes it with its signa-

ture. After that, the KeyGen algorithm is called to create secret
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key SK for this user. For every i ∈ N , the TA selects random

ri from Zp hence r =
∑n

i=1 ri. K̂ is set as gy−r. For i ∈ S,

set Ki = g
ri
ti and Ki = g

ri
tn+i otherwise. Finally, let Fi be

g
ri

t2n+i . The secret key is SK := 〈ver, xf , K̂, {Ki, Fi}i∈N 〉.
In addition, the server maintains a user list UL containing

all the legitimate users’ identity information for each dataset.

Specifically, the data owner first selects a random element s
from Zp. When a new user f joins in the system and is allowed

to search the dataset, the data owner calls CreateUL algorithm

to set D̄f = Y ′
f
−s

and asks the CS to add the tuple (IDf , D̄f )
into the user list, where IDf is the identity of the user f .

Secure Index Generation Before outsourcing a file to the CS,

the data owner calls EncIndex algorithm to generate a secure

index D for this file. In particular, set D̂ = gs and D̃ to be

Y s. Given an access policy GT =
∧

i∈I i, for each i ∈ I,

let Di = T s
i if i = i and Di = T s

n+i if i = ¬i. For each

i ∈ N\I, let Di = T s
2n+i. For some attribute i′ ∈ N (this

fixed position can be seen as part of public parameter) and a

keyword w ∈ W , the data owner sets Di′ to be T
s

H(w)

i′ where

without loss of generality, attribute i′ is assumed to be positive.

The encrypted index D := 〈ver,GT, D̂, D̃, {Di}i∈N 〉.

Trapdoor Generation Every legitimate user in the system

is able to generate a trapdoor for any keyword of interest

by calling the algorithm GenTrapdoor. Specifically, user f
selects random u ∈ Zp. Let Q̂ = K̂u and Q̃ = u+ xf . Qi is

denoted as Ku
i and Qfi = Fu

i . Thus, for the same i′ in secure

index generation phase, Qi′ is set to be K
H(w′)·u
i′ , where w′

is the keyword of interest and Qfi′ = F
H(w′)·u
i′ . The trapdoor

Q := 〈ver, Q̂, Q̃, {Qi, Qfi}i∈N 〉, where ver is the version

number of SK used for generating this trapdoor.

Search Upon receipt of a trapdoor Q and the user identity

IDf , 1) the CS finds out if IDf exists on the user list of

the target dataset. If not, the user is not allowed to search

over the dataset; 2) otherwise, the CS continues the Search
algorithm with the input of trapdoor Q, encrypted index D
and D̄f from the user list. We call this process dataset search

authorization. Then, we move onto the fine-grained file-level

search authorization, which includes three cases:

• If ver of Q is less than ver of D, it outputs ⊥.

• If ver of Q is greater than ver of D, the algorithm

ReEncIndex is called to update the index first.

• If ver of Q is equal to ver of D, the search process is

performed as follows. For each attribute i ∈ I, if i = i
and i ∈ S, then

e(Di, Qi) = e(gti·s, g
ri·u

ti ) = e(g, g)s·u·ri .

If i = ¬i and i /∈ S, then

e(Di, Qi) = e(gtn+i·s, g
ri·u

tn+i ) = e(g, g)s·u·ri .

For each i /∈ I,

e(Di, Qfi) = e(gt2n+i·s, g
ri·u

t2n+i ) = e(g, g)s·u·ri.

For the attribute i′ ∈ N , e(Di′ , Qi′) is equal to

e(g, g)s·u·ri′ as well.

If the following equation holds, the user’s attributes satisfy the

access structure embedded in the index and w′ = w,

D̃Q̃ · D̄f
?
= e(D̂, Q̂) ·

n∏

i=1

e(Di, Q
∗
i ),

where Q∗
i = Qi if i ∈ I and Q∗

i = Qf i otherwise.

Correctness Provided that the user is authorized to access the

file and w′ = w, then

e(D̂, Q̂) ·
n∏

i=1

e(Di, Q
∗
i ) = e(gs, gu·y−u·r) ·

n∏

i=1

e(g, g)s·u·ri

= e(g, g)s·u·y−s·u·r · e(g, g)s·u·r

= e(g, g)s·u·y

= Y s·u

= Y s·(xf+u) · Y −s·xf = D̃Q̃ · D̄f .

Discussion We can achieve scalable fine-grained file-level

search authorization by data-owner-enforced attribute-based

access structure on the index of each file. The search com-

plexity is linear to the number of attributes in the system

rather than the number of authorized users. Hence, this one-

to-many authorization mechanism is more suitable for a large

scale system, such as cloud. Moreover, the dataset search

authorization by using a per-dataset user list may accelerate

the search process, since the CS can decide whether it should

go into a particular dataset or not. Otherwise, the CS has to

search every file at rest.

User Revocation To revoke a user from current system, we

re-encrypt the secure indexes stored on the server and update

the remaining legitimate users’ secret keys. Note that these

tasks can be delegated to the CS using proxy re-encryption

technique so that user revocation is very efficient. In particular,

the TA adopts the ReKeyGen algorithm to generate the re-

encryption key set rk := 〈ver, {rki,val}i∈N ,val∈{+,−}〉. Let

attribute set Φ consist of the attributes that need to be updated,

without which the leaving user’s attributes will never satisfy

the access policy. If an attribute i ∈ Φ, rki,+ =
t′i
ti

is for

the positive attribute i, and for the negative rki,− is set to be
t′n+i

tn+i
, where both t′i and t′n+i are randomly selected from Zp.

If i ∈ N\Φ, set rki,val = 1, where val ∈ {+,−}. Then the

TA refines the corresponding components in MK and PK ,

and publishes the new PK ′ with the signatures. The TA also

sends rk and its signature to the CS.

After receiving rk from the TA, the server checks whether

the version number ver in rk is equal to current ver of the

system (or it can be greater than the current system ver in the

case of lazy re-encryption, see Discussion below). If not, it

discards this re-encryption key set. Otherwise, the CS verifies

rk. Then, the server calls the ReEncIndex algorithm to re-

encrypt the secure indexes in its storage with valid rk. Let Δ
be the set including all the attributes in the access structures of

secure indexes with the re-encryption keys not being 1 in rk.

For each positive i ∈ Δ, D′
i is set as D

rki,+

i , or D′
i = D

rki,−

i

for negative ones. For i /∈ Δ, let D′
i be equal to Di. Finally,

the index is updated as D′ := 〈ver+1, GT, D̂, D̃, {D′
i}i∈N 〉.
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Furthermore, the server is able to update the remaining

legitimate users’ secret keys by the ReKey algorithm. Suppose

that SKL is a list stored on the CS containing all the

partial secret keys PSK’s of all the legitimate users in the

system. PSK is defined as (ver, {Ki}i∈N ). Note that the CS

cannot generate a valid trapdoor with PSK . Let Ω be the set

including all the attributes in PSK with the re-encryption keys

not being 1 in rk. For each attribute i in Ω, denote K ′
i to be

K
rk
−1
i,+

i if i is positive and K
rk
−1
i,−

i otherwise. For each i /∈ Ω,

set K ′
i = Ki. The updated PSK ′ = (ver + 1, {K ′

i}i∈N ),
which is returned to the legitimate user. User can also verify

whether his/her secret key is the latest version by checking

e(Ti,Ki) = (T ′
i ,K

′
i), where T ′

i is the attribute component

in the latest PK ′. Here we suppose all the attributes i are

positive. Otherwise, use Tn+i and T ′
n+i instead in the equation.

Finally, the server may eliminate ID information of the

revoked user f , i.e. the tuple (IDf , D̄f), from all the cor-

responding user lists.

Discussion To handle file index update efficiently, we could

adopt the lazy re-encryption technique [15]. The CS stores the

re-encryption key sets rk’s and will not re-encrypt indexes

until they are being accessed. Specifically, the CS could

“aggregate” multiple rk’s and deal with the index update in

a batch manner. For instance, ver = k in D, ver = j in the

latest rk and k < j, to re-encrypt the index, the CS just calls

ReEncIndex once with
∏j

ρ=k rk
(ρ)
i,val.

C. Conjunctive Keyword Search

Data user may prefer the returned files containing several

intended keywords with one search request, which is referred

to as conjunctive keyword search. Similar to [12], [13], our

proposed ABKS-UR scheme is able to provide conjunctive

keyword search functionality readily as follows. Di′ is defined

as g

s·t
i′∏

wj∈W
H(wj) or g

s·t
i′

⊗wj∈W
H(wj )

, where ⊗ denotes XOR
operation. The components Qi′ and Qfi′ in the trapdoor are

generated accordingly. It is worth noting that this method has

almost the same efficiency as the single-keyword ABKS-UR

scheme, regardless of the number of simultaneous keywords.

V. SECURITY ANALYSIS AND PERFORMANCE EVALUATION

In this section, we analyze security properties of the pro-

posed ABKS-UR scheme, and show that it achieves the de-

fined security design goals. We then provide the performance

evaluation on our proposed scheme.

A. Security Analysis

1) Keyword semantic security: In this paper, we for-

mally define a semantic security game for ABKS-UR (see

Appendix.A). We first give the following theorem, and then

prove our ABKS-UR construction IND-sCP-CKA secure.

Theorem 1: If a probabilistic polynomial-time adversary

wins the IND-sCP-CKA game with non-negligible advantage

ε, then we can construct a simulator B to solve the DBDH

problem with non-negligible advantage ε
2 .

Proof: See Appendix.B.
As per the above theorem, we can conclude that our

proposed scheme is semantically secure in the selective model.

Note that malicious users cannot launch collusion attack to

generate a new valid secret key or trapdoor, which has been

implicitly proved because the adversary A in our security

game has the same capability as the malicious users, i.e. he

can query different secret keys.

2) Trapdoor unlinkability: To generate a trapdoor, the user

chooses a different random number u to obfuscate the trapdoor

such that the CS is visually unable to differentiate two or more

trapdoors even produced with the same keyword. Thus, the

ABKS-UR can provide trapdoor unlinkability property.

B. Performance Evaluation

In this subsection, we will evaluate the performance of our

proposed ABKS-UR scheme by real-world dataset and asymp-

totic computation complexity in terms of the pairing operation

P, the group exponentiation E and the group multiplication M

in G, the group exponentiation E1 and the group multiplication

M1 in G1. Note that we can realize the signature operation by

any secure signature technique, e.g., RSA signature, which

incurs fixed computation overhead, and here we only focus on

evaluating the proposed ABKS-UR scheme, such that we do

not consider the computation overhead for signature. We also

ignore the hash operation as it is much more efficient than the

above mentioned operations. Suppose there exist n attributes in

the proposed scheme. The numerical performance evaluation

is shown in Tab. I. Moreover, to evaluate the key operations

of the proposed scheme, we use the real-world dataset, i.e.

the Enron Email Dataset [27], which contains about half

million files contributed from 150 users approximately. In the

literature, there are few existing works on attribute-structure

based authorized keyword search with experimental results.

We will compare our ABKS-UR scheme with the predicate

encryption based APKS scheme [20] in terms of search

efficiency. We conduct our experiment using C and the Paring-

Based Cryptography (PBC) Library [28] on a Linux Server

with Intel Core i3 Processor 3.3GHz. We adopt the type A

elliptic curve of 160-bit group order, which provides 1024-bit

discrete log security equivalently.

1) System Setup: At this initial phase, the TA defines the

public parameter, and generates PK and MK . The main

computation overhead is 3n exponentiations in G, one ex-

ponentiation in G1 and one pairing operation on the TA side.

As shown in Fig.2 (a), the time cost for system setup is very

efficient and is linear to the number of attributes in the system.

2) New User Enrollment: When a new legitimate user

wants to join in the system, he/she has to request the TA to

generate the secret key SK , which needs 2n + 1 exponenti-

ations in G. The TA also needs one exponentiation in G1 to

generate a new PK component for the user. A data owner may

also allow the user to access the dataset by adding him/her onto

the corresponding user list, which incurs one exponentiation

in G1. It is obvious that the time cost to enroll a new user is

proportional to the number of attributes in the system.
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Fig. 2. Performance evaluation on ABKS-UR. (a) Time cost for system setup. (b) Secure index generation time for 10000 files. (c) Trapdoor generation
time. (d) Time cost for search over a single index.

TABLE I
NUMERICAL EVALUATION OF ABKS-UR

Operation Computation complexity
System Setup 3nE + E1 + P

New User Enrollment (2n+ 1)E + 2E1

Secure Index Generation (n+ 1)E + E1

Trapdoor Generation (2n+ 1)E
Per-index Search (n+ 1)P + (n+ 2)M1 + E1

ReKeyGen x(M + E), 1 ≤ x ≤ n

ReEncIndex yE, 1 ≤ y ≤ n

ReKey zE, 1 ≤ z ≤ n

3) Secure Index Generation: The data owner approximately

needs (n + 1)E + E1 to generate a secure index for a file.

Furthermore, we evaluate the practical efficiency of creating

secure indexes for 10000 files, as shown in Fig.2 (b). It exhibits

the expected linearity with the number of attributes in the

system. When there exist 30 attributes in the system, the data

owner would spend about 8 minutes encrypting the indexes for

10000 files. Note that this computational burden on the data

owner is a one-time cost. After all the indexes outsourced

to the CS, the following index re-encryption operation is

also delegated to the server. Thus, the overall efficiency for

encrypting index is totally acceptable in practice.

4) Trapdoor Generation: With the secret key, data user

is free to produce the trapdoor of any keyword of interest,

which requires about 2n + 1 group exponentiations in G.

Moreover, the experimental result in Fig.2 (c) shows that

our proposed authorized keyword search scheme enjoys very

efficient trapdoor generation. In accordance with the numerical

computation complexity analysis, the trapdoor generation will

need more time with the increased number of attributes.

5) Search: To search over a single encrypted index, the

dominant computation of ABKS-UR is n + 1 pairing opera-

tions, while APKS [20] needs n+3 pairing operations. Fig.2

(d) shows the practical search time of ABKS-UR and APKS

on a single secure index with different number of attributes

respectively. With the same number of system attributes,

ABKS-UR is slightly faster than APKS. Moreover, compared

with APKS, ABKS-UR allows users to generate trapdoors

independently without resorting to an always online attribute

authority, and it has a broader range of applications due to

the arbitrarily-structured data search capability. Notice that

the search complexity of our scheme will varies a lot for

different data users, since the dataset search authorization

only allows users on the user lists to further access the

corresponding datasets. Assume that there exist 10000 files and

30 system attributes. In the worse case of search over every

file in the storage, the CS, with the same hardware/softwore

specifications as our experiment, requires less than 5 minutes

to complete the search operation. Thus, with a more powerful

cloud, our proposed ABKS-UR scheme would be efficient

enough for practical use.

6) User Revocation: As the server can efficiently eliminate

the revoked user’s identity information from the corresponding

user lists, we do not show it in Tab.I. Instead, we calculate the

main computation complexity of ReKeyGen, ReEncIndex

and ReKey. To update the system, the TA uses the algorithm

ReKeyGen to produce the new version of MK ′ and PK ′,

and the re-encryption key set rk. Depending on the number

of attributes to be updated, generating rk requires minimum

M to maximum nM operations. Likewise, the computation

overhead for PK ′ is within the range from E to nE. Moreover,

the CS calls the ReEncIndex algorithm to re-encrypt the

secure indexes at its storage. Each index update needs E to

nE operations in G, which is also the computation overhead

range for the CS to update a legitimate user’s secret key by

algorithm ReKey.

VI. CONCLUSION

In this paper, we design the first attribute-based key-

word search scheme in the cloud environment, which en-

ables scalable and fine-grained owner-enforced encrypted data

search supporting multiple data owners and data users. Com-

pared with existing public key authorized keyword search

scheme [13], our scheme could achieve system scalability

and fine-grainedness at the same time. Different from search

scheme [20] with predicate encryption, our scheme enables a

flexible authorized keyword search over arbitrarily-structured

data. In addition, by using proxy re-encryption and lazy re-

encryption techniques, the proposed scheme is better suited

to the cloud outsourcing model and enjoys efficient user
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revocation. Moreover, we formally prove the proposed scheme

semantically secure in the selective model.
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APPENDIX

A. Security Definition for ABKS-UR

We first give the cryptographic assumption that our scheme

relies on.

Definition 2 (The DBDH Assumption [29]): Let a, b, c, z ∈
Zp be chosen at random and g be a generator of G. The

DBDH assumption is that no probabilistic polynomial-time

adversary B can distinguish the tuple A = ga, B = gb, C =
gc, e(g, g)abc from the tuple A = ga, B = gb, C = gc, e(g, g)z

with non-negligible advantage. The advantage of B is defined

as follows,

|Pr[B(A,B,C, e(g, g)abc) = 0]−Pr[B(A,B,C, e(g, g)z) = 0]|

where the probability is taken over the random choice of the

generator g, the random choice of a, b, c, z in Zp, and the

random bits consumed by B.

The semantic security game between an adversary A and a

challenger B is defined as follows.

Init. The adversary A submits a challenge access policy

GT , a version number ver∗ and ver∗ − 1 attribute sets

{Φ(ρ)}1≤ρ≤ver∗−1 to the challenger B.

Setup. The challenger B runs Setup(λ,N ) to obtain

PK and MK for version 1. For each version ρ ∈
{1, ..., ver∗ − 1}, B runs ReKeyGen(Φ,MK). Then he pub-

lishes {rk(ρ)}1≤ρ≤ver∗−1 to A, where rk(ρ) is defined as the

re-encryption key set of version ρ. Given {rk(ρ)}1≤ρ≤ver∗−1,

the adversary A is able to compute PK for the corresponding

version ρ+ 1.

Phase 1. By submitting any keyword w ∈ W , the adversary

A is allowed to request the challenger B to generate trapdoors

of any version from 1 to ver∗ polynomial times (in λ). The

only restriction is that the attribute set associated with each

trapdoor query submitted by A does not satisfy the challenge

access structure GT .

Challenge. Upon receipt of challenge keyword w0, w1 ∈ W
of the same length from the adversary A, B flips a ran-

dom coin μ ∈ {0, 1} and get a challenge index Dμ ←
EncIndex(PK,GT,wμ), where GT is the challenge access

structure and PK is of version ver∗. B returns Dμ to A.

Phase 2. Same as phase 1.

Guess. Adversary A submits his guess μ′ of μ.

Definition 3 (IND-sCP-CKA Security): The proposed

ABKS-UR scheme is IND-sCP-CKA secure if for all
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probabilistic polynomial-time adversary A, the advantage

AdvIND−sCP−CKA
A in winning the semantic security game

is negligible.

AdvIND−sCP−CKA
A = Pr[μ′ = μ]−

1

2
.

Notice that the trapdoor query oracle in Phase 1 implicitly

includes the secret key query oracle, which may send the

partial secret key (see section IV) back to the adversary. Since

the adversary A is allowed to obtain all the re-encryption keys,

he is able to update indexes, secret keys and trapdoors on his

own such that we do not let challenger answer these queries

in Phase 1 and Phase 2. Moreover, in the selective model,

our semantic security game allows the adversary to query any

keywords at Phase 1 and Phase 2 as long as the attribute

sets associated with the queried trapdoors do not satisfy the

challenge access policy GT .

B. Security Proof for ABKS-UR

In what follows, we will prove ABKS-UR construction

IND-sCP-CKA secure.

Proof: The DBDH challenger first randomly chooses

a, b, c, z ∈ Zp and a fair coin ν ∈ {0, 1}. It defines Z to be

e(g, g)abc if v = 0, and e(g, g)z otherwise. Then the simulator

B is given a tuple (A,B,C, Z) = (ga, gb, gc, Z) and asked to

output ν. The simulator B now plays the role of challenger in

the following game.

Init. In this phase, simulator B receives the challenge access

structure GT =
∧

i∈I i, a version number ver∗ and ver∗ − 1
attribute sets {Φ(ρ)}1≤ρ≤ver∗−1 from adversary A.

Setup. For PK of version 1, Simulator B sets Y to be

e(A,B) = e(g, g)a·b, which implicitly defines y = a · b.
Choose random x = θ ∈ Zp and define Y ′ to be e(A,B)θ =
e(g, g)a·b·θ. For each i ∈ N , B selects random αi, βi, γi ∈ Zp,

and outputs the following public parameters.

For i ∈ I, Ti = gαi , Tn+i = Bβi , T2n+i = Bγi if i = i;
Ti = Bαi , Tn+i = gβi , T2n+i = Bγi if i = ¬i.

For i /∈ I, Ti = Bαi , Tn+i = Bβi , T2n+i = gγi .

For each attribute set Φ(ρ), 1 ≤ ρ ≤ ver∗ − 1, B
generates the re-encryption key rk(ρ) and the PK of that

version. For each attribute i ∈ Φ(ρ), rk
(ρ)
i,val where val ∈

{+,−}, is randomly selected from Zp. T
(ρ+1)
i = (T

(ρ)
i )rk

(ρ)
i,+ ,

T
(ρ+1)
n+i = T

(ρ)
n+i, and T

(ρ+1)
2n+i = T

(ρ)
2n+i if attribute i is

positive. Otherwise, T
(ρ+1)
i = T

(ρ)
i , T

(ρ+1)
n+i = (T

(ρ)
n+i)

rk
(ρ)
i,− ,

and T
(ρ+1)
2n+i = T

(ρ)
2n+i. Then, for each i /∈ Φ(ρ), set rk

(ρ)
i,val = 1

and the remaining public parameters of version ρ+ 1 are the

same with those of version ρ. Finally, simulator B publishes

rk(ρ) = 〈ρ, {rk
(ρ)
i,val}i∈Φ(ρ),val∈{+,−}〉 to A.

Phase 1. Without loss of generality, assume that adversary A
submits a keyword wl and a set S ⊆ N to B for version ρ,

where 1 ≤ ρ ≤ ver∗ and S does not satisfy GT . B uses the

collision-resistant hash function to output H(wl) = hl. Since

S does not satisfy GT , a witness attribute j ∈ I must exist.

Thus, either j ∈ S and j = ¬j, or j /∈ S and j = j. Without

loss of generality, we assume j /∈ S and j = j.
Simulator B chooses random {r′i}1≤i≤n ∈ Zp. Set rj =

a·b+r′j ·b and ri = r′i ·b if i �= j. Denote r =
∑n

i=1 ri = a·b+∑n
i=1 r

′
i ·b. B defines u to be a random nubmer λ selected from

Zp. As such, Q̂ is defined to be gy·u−r·u = g−
∑n

i=1 r′i·b·λ =
B−

∑n
i=1 r′i·λ. The Q̃ component of the trapdoor is defined to

be x+ u = θ + λ.

By defining rk
(ρ)
i,val = 1 where val ∈ {+,−} if i /∈ Φ(ρ),

B could compute the followings for each i ∈ N : for 2 ≤ ρ ≤

ver∗, T
(ρ)
i = (T

(1)
i )rk

(1)
i,+·rk

(2)
i,+···rk

(ρ−1)
i,+ = (T

(1)
i )

∏ρ−1
o=1 rk

(o)
i,+ ,

and T
(ρ)
n+i = (T

(1)
n+i)

rk
(1)
i,−·rk

(2)
i,−···rk

(ρ−1)
i,− = (T

(1)
n+i)

∏ρ−1
o=1 rk

(o)
i,− .

B denotes R
(ρ)
i =

∏ρ−1
o=1 rk

(o)
i,+ and R

(ρ)
n+i =

∏ρ−1
o=1 rk

(o)
i,−.

Simulator B sets Qj = A

λ

βj ·R
(ρ)
j+1 ·g

r′j ·λ

βj ·R
(ρ)
j+1 = g

a·b+r′j ·b

b·βj ·R
(ρ)
j+1

·λ

=

g

rj ·u

b·βj ·R
(ρ)
j+1 .

For i �= j, 1) i ∈ S. Qi = B

r′i·λ

αi·R
(ρ)
i = g

ri·u

αi·R
(ρ)
i if i ∈ I∧i =

i; Qi = g

r′i·λ

αi·R
(ρ)
i = g

ri·u

b·αi·R
(ρ)
i if (i ∈ I ∧ i = ¬i) ∨ i /∈ I.

2) i /∈ S. Qi = B

r′i·λ

βi·R
(ρ)
n+i = g

ri·u

βi·R
(ρ)
n+i if i ∈ I ∧ i = ¬i;

Qi = g

r′i·λ

βi·R
(ρ)
n+i = g

ri·u

b·βi·R
(ρ)
n+i if (i ∈ I ∧ i = i) ∨ i /∈ I.

Similarly, let Qfj = A
λ
γj · g

r′j ·λ

γj = g
a·b+r′j ·b

b·γj
·λ

= g
rj·u

b·γj . For

{Qfi}i�=j , we have 1) i ∈ I. Qfi = g
r′i·λ

γi = g
ri·u

b·γi . 2) i /∈ I.

Qfi = B
r′i·λ

γi = g
ri·u

γi .

Without loss of generality, assume i′ ∈ S ∩ I and i′ = i′.

Simulator B sets Qi′ = B

r′
i′
·λ·hl

α
i′
·R

(ρ)

i′ = g

r
i′
·u·H(wl)

α
i′
·R

(ρ)

i′ .

Challenge. Upon receiving the challenge keywords w0, w1

from adversary A, simulator B flips a random coin μ ∈ {0, 1}
and then encrypts wμ with the challenge gate GT . From

the collision-resistant hash function H , simulator B obtains

H(wμ) = hμ. For version ver∗ and i ∈ I, Di is defined

to be Cαi·R
(ver∗)
i if i = i and Cβi·R

(ver∗)
n+i if i = ¬i. For

i /∈ I, let Di = Cγi . Without loss of generality, assume

i′ ∈ I and i′ = i′ such that Di′ = C
α
i′
·R

(ver∗)

i′

hμ . Finally,

B sets D̂ = C, D̃ = Z and D̄ = Z−θ.

Phase 2. Same as phase 1.

Guess. Adversary A submits μ′ of μ. If ν = 1, adversary A
cannot acquire any advantage in this semantic security game

but a random guess. Therefore, we have Pr[μ �= μ′|ν = 1] =
1
2 . When μ �= μ′, simulator B outputs ν′ = 1, such that

Pr[ν′ = ν|ν = 1] = Pr[ν′ = 1|ν = 1] = 1
2 . If ν = 0, a

valid D is given to adversary A. He can win this game with

non-negligible advantage ε. Hence, Pr[μ = μ′|ν = 0] = 1
2+ε.

When μ = μ′, simulator B outputs ν′ = 0, we have

Pr[ν′ = ν|ν = 0] = Pr[ν′ = 0|ν = 0] = 1
2 + ε. The

advantage AdvDBDH
A of simulator B in the DBDH game is

Pr[ν′ = ν] − 1
2 = Pr[ν′ = ν|ν = 1]Pr[ν = 1] + Pr[ν′ =

ν|ν = 0]Pr[ν = 0]− 1
2 = 1

2 · 1
2 + (12 + ε) · 1

2 − 1
2 = ε

2
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